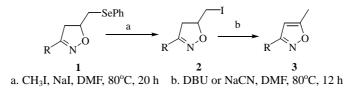
An Efficient Deselenenylation Reaction to the Synthesis of 3, 5-Disubstituted Isoxazoline and Isoxazole

Wei Ming XU, Yu Guang WANG, Zhen Hua CHEN, Xian HUANG*

Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028


Abstract: A mild deselenenylation reaction protocol for the preparation of 3, 5-disubstituted isoxazolines and their further application to 3-methyl-5-substituted isoxazoles both in solution phase and solid phase was reported.

Keywords: Deselenenylation reaction, isoxazoline, isoxazole.

The development of organoselenium chemistry¹ has been expanding rapidly during the last decades. Among them, organic selenides are key intermediates, for that they can be efficiently introduced, manipulated, and removed through selenoxide *syn*-elimination². Our research group³ has been interested in the application of selenium in organic synthesis for several years. Isoxazolinyl substituted phenyl selenide 1^{3a} , although a β -H exists in the molecule, did not undergo selenoxide *syn*-elimination even they were mixed with H₂O₂ in THF and stirred at 50 °C for 1 h. In order to solve this problem, here we reported a mild deselenenylation protocol to prepare 3,5-disubstituted isoxazolines and their further application to prepare 3-methyl-5-substituted isoxazoles as an important complementarity of selenoxide *syn*-elimination.

Isoxazolinyl substituted phenyl selenide (1.0 mmol), NaI (1.0 g), CH_3I (1.0 mL) and 5 mL DMF were mixed together (**Scheme 1**). The mixture was stirred at 80°C for 20 h to afford 3-substituted-5-iodomethyl isoxazoline in good yield. 3-Substituted-5-iodomethyl isoxazoline was then treated with the organic base 1,5-diazabicyclo[5,4,0]-undec-5-ene (DBU) or NaCN both to afford 5-methyl-3-substituted isoxazole almost quantitatively. The results are summarized in **Table 1**.

Scheme 1

^{*}E-mail: huangx@mail.hz.zj.cn

Wei Ming XU et al.

Product	R	Yield $(\%)^a$
2a	$4-CH_3C_6H_4$	85
2b	$4-FC_6H_4$	85
2c	$4-BrC_6H_4$	84
2d	COOEt	90
2e	$4-NO_2C_6H_4$	87
2f	C_6H_5	88
3a ^b	$4-BrC_6H_4$	97
3b ^c	$4-CH_3C_6H_4$	96
lated yield, ^b DBU w	as used as base, ^c NaCN wa	as used as base
	Scheme 2	

Table 1 Synthesis of 3, 5-disubstituted isoxazolines and isoxazoles

In connection with our previous work, polymer supported 3-(4-methylphenyl)isoxazolinyl substituted selenide 4^4 , which could not undergo selenoxide *syn*-elimination either, reacted smoothly with NaI and CH₃I using the same procedure. And 3-(4-methylphenyl)-5-iodomethyl isoxazoline **2a** was obtained in good yield and high purity (Scheme 2).

In summary, we have developed a mild deselenenylation reaction protocol for the preparation of 3, 5-disubstituted isoxazolines both in solution phase and solid phase. And they reacted further with a base to afford 3-methyl-5-substituted isoxazoles almost quantitatively.

Acknowledgment

We are grateful to the National Natural Science Foundation of China (20332060) and the CAS Academician Foundation of Zhejiang Province.

References

- 1. T. G. Back, Organoselenium Chemistry, Oxford University Press: Oxford, 1999.
- 2. D. L. J. Clive, Tetrahedron, 1978, 34, 1049.
- 3. (a) W. M. Xu, L. L. Wu, X. Huang, Chin. Chem. Lett., 2004, 11, 1279. (b) W. M. Xu, E. Tang,
 - X. Huang, Synthesis, 2004, 2094. (c) X. Huang, M. H. Xie, Organic Lett., 2002, 4, 1331.
- 4. X. Huang, W. M. Xu, Organic Lett., 2003, 5, 4649.

Received 10 October, 2004